REVERSED-PHASE CHROMATOGRAPHY OF ALKALINE EARTHS ON PAPER TREATED WITH DI- n-BUTYL PHOSPHATE

N. CVJETICANIN
Hot Laboritory Department, Boris Kidrič Institute of Nuclear Sciences, Beograd (Yugoslavia)

(Received July 27th, 1967)

Chromatographic paper or cellulose powder treated with dialkyl esters of phosphoric acid which act as liquid cation exchangers have proved to be very efficient for the separation of various metal ions, especially lanthanides ${ }^{\mathbf{1 - 3}}$.

Investigations of the behaviour of rare earths have shown that a striking similarity exists between the results obtained by chromatography and those obtained by solvent extraction, if the same organophosphate is used in both methods ${ }^{3-5}$. The results of our preceding work, obtained on paper treated with di-n-butyl phosphate (HDBP) ${ }^{6}$ also support this analogy.

The present work investigates the behaviour of beryllium magnesium, calcium, strontium and barium in reversed-phase partition chromatography, using paper impregnated with HDBP and bydrochloric acid as the eluent. The results obtained are interpreted in terms of a simple partition equilibrium in close analogy to the distribution of species in solvent extraction. At the same time the feasibility of mutual separation of alkaline earths as well as their separation from other elements is demonstrated.

EXPERIMENTAL

Materials and reagents

The chromatographic paper was treated with a carbon tetrachloride solution of HDBP which was supplied by Albright Wilson Co., Oldbury (England). The purity of HDBP with respect to the content of $\mathrm{H}_{2} \mathrm{MBP}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ was checked chromatographically ${ }^{7}$. An $0.05 M$ solution of alkaline earths in the form of chlorides was used. The behaviour of aluminium and caesium was also investigated and for these purposes an o.or M solution of aluminium and caesium chloride was used, respectively.

All experiments were performed on Whatman No. r paper strips, $2 \times 35 \mathrm{~cm}$, in a glass cylinder 14 cm diam. $\therefore 40 \mathrm{~cm}$, by ascending chromatography.

Preparation of the paper and chromatographic procedure

The chromatographic paper was treated in the same way as described previously ${ }^{6}$. The solution of HDBP in CCl_{4} was equilibrated with $2 M \mathrm{HCl}$ for 20 min . The paper sheets were carefully washed with $2 M \mathrm{HCl}$ and rinsed with distilled water before treatment with HDBP. After drying, the paper was dipped in a solution of HDBP in CCl_{4} for I min and dried in a stream of warm air.

An aliquot of $\sim 0.005 \mathrm{ml}$ of the solution of the elements to be investigated was spotted on the paper at the starting position. These spots did not contain more thana $5 \cdot 10^{-4}$ equivalents of sach ion.

After developroent tite ions were detected with a suitable sensitive reagent. $\mathrm{Be}^{2+}, \mathrm{Mg}^{2+4}$ and Ca^{2+} spots were made vinibie in DV. Tight after spaying the strips with a 0.5% alcoholic solution of 8 -hyduexyquinoline and exposing them to ammonia vapous, $\mathrm{Sr}^{2}+$ and Ba^{2} were identified with a fresh o. $\%$ solution of sodiam rhedizonate ${ }^{4}$ or a 0.5% solution of sodium alizaninsulphonate ${ }^{9}$. A13+ was detected with a 0.05% solution of motint ${ }^{36}$ and ${ }^{314} \mathrm{CS}$ by measuring its radioactivity along the paper strip with a G.M. counter.

When the depeadence of the R_{F} values on the amonat of HDBP impregnated in the paper was studied, the paper strips were trested with various solutions of MDBP, mostly in the concentration range o.or-a.z M.

Chromatograms wete developed with hydrochloric acid shlutions from $x \cdot 10^{-3}$ up to xo M. The development took from a to 8 b , depending on the anount of MDBP impregnated and on the HCl concentration of the mobile phase. Esually the sofvent front was allowed to rum up to 25 cm . Two or three chromatograms were rum simoltaneowsly for each elensert and for each concentration of HCl and HDEDP, The use of very low concentrations of hylrochbric acid in twe mobile phase caused a small shift of HDBP concentration in the stationary phase. This effect is probably due to dissociation and a slight dissolution of HDEP in the mobile phase ${ }^{\text {th }}$, which influenced the R_{F} value of the ions. A previous equilibration of the aqueous acid solution with the orgasic phase apparently does not prevent this effect. However it was completely eliminated by shiting the starting position approximately 2 cm above the line at which HDPP starts to be wathed out. Actually, by this technique a saturation of the rmobile phase with HOBP is achieved before the mobile phase reaches the startarg point. The line was dearly visible under U.V. hghe after spraying the developed paper strips (on which tons were not spotted) with an akoholic selution of 8 -hydroxyquinoline. As a consequence of this modification the development of the paper strips zreated with low amsunts of HDBF at a MCl concentration beloss $30^{-2} M$, torak $30-12 \mathrm{~h}$. The reproducibility of the R_{F} walues of the tons under these conditions was $\pm 3 \%$.

 HDESP.

TABIE I
Rp Values for alkaline earths, aluminium and caesivm, as a function of hCl concentration The paper is impregnated with HDBP.

$\begin{aligned} & H D B P \\ & (M) \end{aligned}$	Cations	$\mathrm{HCl}(\mathrm{M})$									
		0.001	0.005	0.01	0.03	0.04	0.05	0.075	0.1	0.14	0.19
0.2	$\mathrm{Be}^{\text {2 }}$			0.10	0.18	$\begin{aligned} & 0.83 \\ & 0.26 \end{aligned}$		0.45	0.0	0.65	0. 74
	Mga'	0.72	0.83						0.85		
	Ca^{2+}	0.0					0.34		0.54		
	Sr^{2+}	0.66	0.85				0.83		0.84		
	$\mathrm{Ba}^{\mathbf{4}}+$	0.68	0.86				0.84		0.85		
O.I	Be ${ }^{\text {2-- }}$	0.0	0.0	0.0	0.33	0.45	0.0	0.62	0.0	0.81	0.88
	Mg ${ }^{\text {- }}$	0.92	0.93	0.93			0.94		0.94		
	Ca^{2+}	0.0	0.10	0.20			0.50		0.69		
	Sr^{2+}	0.86	0.88	0.92			0.92		0.91		
	Ba^{2+}	0.88	0.90	0.90			0.89		0.88		
	Cs^{+}	0.90	0.90	0.90			0.91		0.91		
	Al^{3+}										
0.075	$\mathbf{B e}^{2+}$										0.89
	Ca^{2+}				0.42	0.50	0.62	0.66	0.77		
0.05	$\mathrm{Be}^{\mathbf{2}+}$				0.48	0.59	0.67	0.72	0.80	0.080.90	
	Ca^{2}										
0.025	Be^{2+}									O. 11	
0.01	$\mathbf{B e}{ }^{2+}$									0.15	

RESULTS AND DISCUSSION

The dependence of the R_{F} values of the ions on the HCl concentration of the mobile phase for papers treated with o.r and o.2 $M \mathrm{HDBP}$ is shown in Fig. I. The numerical values are given in Table I.

From the data presented it can be seen that the R_{F} values of Ca^{2+} and Be^{2+} increase with increasing molarities of HCl . The R_{F} values for $\mathrm{Mg}^{2+}, \mathrm{Sr}^{2+}$ and Ba^{2+} are very high, which might imply that these elements do not show affinity to the organic extractant over a wide range of HCl concentration. A decrease in the R_{F} values at very high HCl concentrations was observed for all alkaline earth elements, and especially in the case of Sr^{2+} and Ba^{2+}. This effect was also found when the paper was impregnated with other organo-phosphorus compounds ${ }^{12-14}$. It might be due to a dehydration process which appears at high hyorochloric acid concentration. In the whole range of HCl concentration investigated, the R_{F} for Cs^{+}is abcut 0.90 , while the shape of the curve obtained for aluminium is similar to those found for trivalent rare earths ${ }^{6}$.

Based on the results shown in Table I and Fig. 1 , the dependence of the R_{F} values of Be^{2-} and Ca^{2-} on the HCl and HDBP concentrations was investigated in more detail.

It is known that the behaviour of ions in reversed-phase partition chromatography can be correlated to a liquid-liquid partition by means of the following expression ${ }^{3,15}$:

0.40	0.50	0.75	I	1.5	2	2.5	3	4	6	8	10
0.10	0.15		0.41	0.57	0.69	0.71	0.78	0.82	0.74	0.66	0.62
	0.90		0.90		0.90			0.90	0.88	0.86	0.82
0.90			0.92		0.93			0.90	0.88	0.72	0.68
	0.88		0.88		0.88			0.87	0.77	0.65	0.60
	0.86		0.87		0.86			0.78	0.66	0.54	0.30
0.19	0.28		0.56		0.77	0.85	0.88	0.84	0.85	0.79	0.76
	0.95		0.94		0.96			0.95	0.89	0.90	0.88
	0.95		0.96		0.96			0.91	0.89	0.81	0.71
	0.92		0.92		0.93			0.89	0.86	0.68	0.63
	0.90		0.90		0.88			0.80	0.72	0.60	0.46
	0.92		0.91		0.92			0.92	0.90	0.88	0.89
	0.0		0.0		0.0			0.0	0.20	0.41	0.65
0.24	0.33	0.53	0.61	0.79	0.82	a89					
0.29	0.41	0.58	0.67	0.83	0.87						
0.41	0.55	0.69	0.76	0.87							
0.46	0.68	0.76	$\bigcirc .8_{4}$	0.90							

$\log E_{a}^{\mathbf{0}}=\log \left(\mathrm{x} / \boldsymbol{R}_{\boldsymbol{F}}-\mathrm{I}\right)+\log k$
Here, E_{u}^{0} is the liquid-liquid distribution coefficient, while k is a constant parameter which depends on the experimental conditions. The relation between $\log \left(1 / R_{F}-1\right)$ and $\log \left[\mathrm{H}^{+}\right]$for both ions is shown in Figs. 2 and 3. These results were obtained using papers impregnated with different HDBP solutions (o.or-o.2 M). The slope of the straight line for Be^{2+} is -1.8 , close to the theoretical value of -2 , as obtained by liquid-liquid extraction ${ }^{18,17}$. However, for Ca^{2+} the slope is only - 1.5 .

The dependence of $\log \left(\mathrm{r} / R_{F}-1\right)$ for Be^{2+} and Ca^{2+} on the amount of HDBP fixed on the paper was investigated at a constant concentration of HCl in the mobile phase. The amount of HDBP on paper expressed in $\mathrm{mg} / \mathrm{cm}^{2}$ was determined by weighing the paper strips before and after impregnation and drying. The mobile phase for Be^{2+} was $0.5 M \mathrm{HCl}$ and for $\mathrm{Ca}^{2+} 0.05 M \mathrm{HCl}$. The slopes of the lines obtained was 2.5 in both cases (Fig. 4).

It is known that HDBP tends to form dimeric molecules in nonpolar solvents. In carbon tetrachloride the dimerization constant of HDBP is very large ($\log K_{2}=$ 6.49), so that even at very low concentrations of HDBP the monomeric form (HA) can be neglected. Hence, the whole amount of HDBP in the organic phase is practically in the form of the dimer $\left(\mathrm{H}_{2} \mathrm{~A}_{2}\right)^{11,18}$.

In the present case it was also assumed that di-n-butyl phosphate is dimerized and the concentrations were recalculated in millimoles of $\mathrm{H}_{2}(\mathrm{DBP})_{2}$ (see Fig. 4).

Taking into account that for both lines in Fig. 4 a slope of 1.5 was obtained. the following equilibrium is proposed:
$\mathbf{N}^{2+}+\mathbf{1 . 5} \mathbf{H}_{2} \mathbf{A}_{2} \rightleftharpoons \mathbf{M A} \mathbf{H H A}_{3}+2 \mathrm{H}^{+}$
In the above reaction the hyrtration of species is neglected. The equilibrium constant of this reaction equals:

$$
\begin{equation*}
K_{e}=\frac{\left[\mathrm{MA}_{2} \mathrm{HA}\right]_{\mathrm{org}}[\mathrm{H}+]^{2}}{\left[\mathrm{MR}^{2}+\right]\left[\mathrm{H}_{2} \mathrm{~A}_{2}\right]_{\mathrm{org}^{3 / 2}}} \times \mathrm{f}(\gamma) \tag{3}
\end{equation*}
$$

where $f(\gamma)$ is an activity coefficient ratio. As a first approximation it is assumed that in the range of HCl concentrations used $\mathrm{f}(\gamma)$ is constant.

The extraction coefficient equals:
$E_{a}^{0}=\frac{\left[\mathrm{MA}_{2} \mathrm{HA}^{2}\right] \mathrm{org}}{\left[\mathbf{M}^{2+}\right]}$
Taking into account eqn. (x), it can be written:
$\log \left(x / R_{F}-\mathrm{x}\right)=1.5 \log \left[\mathrm{H}_{2} \mathrm{~A}_{2}\right]-2 \log \left[\mathrm{H}^{+}\right]+$const.
Here the term "const." includes $K_{e}, \mathrm{f}(\gamma)$ and k from eqns. (t$)$ and (3).
From eqn. (4) it is obvious that a plot of $\log \left(x / R_{F}-x\right)$ vs. $\log \left[\mathrm{H}^{+}\right]$at constant concentration of $\mathrm{H}_{2} \mathbf{A}_{2}$ should give a straight line of slope - 2. As mentioned earlier, for Be^{2+} the slope was $-r .8$ which is close to the theoretical value of -2, but for Ca^{2+} the slope was only - 1.5 . This deviation from the value of - 2 might be due to a partial complexing of the metal ion with chloride ion at higher HCl concentration:

Fig. 2. Plot of $\log \left(1 / R_{F}-1\right)$ vs. $\log \left[\mathrm{H}^{+}\right]$for beryllium. The slope of the straight lines is -r.8.

Fig. 3. Plot of $\log \left(1 / R_{F}-1\right)$ vs. $\log \left[\mathrm{H}^{+}\right]$for calcium. The slope of the straight lines is - \mathbf{I}.5.

$$
\begin{aligned}
& \mathrm{M}^{2+}+\mathrm{I} .5 \mathrm{H}_{2} \mathrm{~A}_{2} \rightleftharpoons \mathrm{MA}_{2} \mathrm{HA}+2 \mathrm{H}^{+} \\
& \mathrm{MCl}++\mathrm{I} .5 \mathrm{H}_{2} \mathrm{~A}_{2} \rightleftharpoons \mathrm{MClA} \cdot 2 \mathrm{HA}+\mathrm{H}^{+}
\end{aligned}
$$

If both equilibria take place, a slope between -2 and $-I$ can be obtained in the plot of $\log \left(I / R_{F}-I\right)$ vs. $\log \left[\mathrm{H}^{+}\right]$. Such intermediate values of slopes were also obtained for alkaline earths on paper treated with di(2-ethylhexyl) phosphate from chloride media ${ }^{19}$.

Taking into account the amount of HDBP fixed on the paper it was also possible to recalculate the data for rare earths which were reported earlier ${ }^{6}$. The plots of $\log \left(\mathrm{I} / R_{F}-\mathrm{I}\right)$ vs. $\log \left[\mathrm{H}_{2} \mathrm{~A}_{2}\right]$ for La^{3+} and Ce^{3+} (Fig. 5) are now straight lines whose slope is 1.5 . Hence, for the rare earths the following reaction seems to be valid:

$$
\begin{equation*}
\mathrm{M}^{3+}+\mathrm{I} \cdot 5 \mathrm{H}_{2} \mathrm{~A}_{2} \rightleftharpoons \mathrm{MA}_{3}+3 \mathrm{H}+ \tag{5}
\end{equation*}
$$

The above equation agrees with the data obtained by liquid-liquid extraction in the range of low concentration of HDBP ${ }^{20,21}$.

The apparent equilibrium constant

If the constant term of eqn. (4) is expressed as $\log K_{h}=\log K_{e}-\mathrm{f}(\gamma)-\log K_{\text {, }}$ the following expression is obtained:
$\log \left(\mathrm{I} / R_{F}-\mathrm{I}\right)=\log \frac{\left[\mathrm{H}_{2} \mathrm{~A}_{2}\right]^{3 / 2}}{\left[\mathrm{H}^{+}\right]^{2}}+\log K_{h}$
This is a straight line in a log-log plot, and by extrapolating to $\log \left(\left[\mathrm{H}_{2} \mathrm{~A}_{2}\right]^{3 / 2} /\right.$
$\left.\left[\mathrm{H}^{+}\right]^{2}\right)=0$ the apparent constant K_{h} can be obtained. Such a plot for Be^{2+} is shown in Fig. 6. By means of the least square method $\log K_{h}=4.62 \pm 0.09$ was obtained for Be^{2+}.

As mentioned before, the distribution of calcium between the two phases cannot be explained by a simple equilibrium, and therefore no attempts were made to calculate the apparent constant K_{h}.

In the case of La^{3+} and Ce^{3+} (see ref. 6), the K_{h} values were determined by means of the expression:

$$
\log \left(\mathrm{I} / R_{F}-\mathrm{I}\right)=\log \frac{\left[\mathrm{H}_{\mathrm{B}} \mathrm{~A}_{2}\right]^{3 / 2}}{[\mathrm{H}+]^{3}}+\log K_{h}
$$

derived from eqn. (5). For $\mathrm{La}^{3+} \log K_{h}=3.63 \pm 0.08$ and for $\mathrm{Ce}^{3+} \log K_{h}=3.87 \pm$ 0.09 was obtained (see Fig. 7).

Since $\log K_{h}=\log \left(K_{e} / k \cdot \mathrm{f}(\gamma)\right.$ and k is the volume ratio between the mobile and the stationary phase, it was of considerable interest to determine the value of k by means of eqn. (I). For that purpose it is sufficient to determine the extraction coefficient E_{a}^{o} for one cation. The liquid-liquid distribution measurements were performed by using the radioactive isotope cerium-I44 (Ce^{3+}) and the same HDBP and HCl concentration in the organic and aqueous phases as in the chromatographic investigation. The mean value from a large number of determinations is $\log k=-2.04$. Using this value and defining an apparent equilibrium constant $\log K=\log K_{e}$ -

Fig. 4. Plot of $\log \left(1 / R_{F}-1\right)$ vs. $\log \left[\mathrm{H}_{2}(\mathrm{DBP})_{2}\right]$ for Be^{2+} and Ca^{2+} with 0.5 and 0.05 M HCl , respectively.

Fig. 5. Dependence of $\log \left(\mathrm{I} / R_{F}-\mathrm{I}\right)$ on $\log \left[\mathrm{H}_{2}(\mathrm{DBP})_{2}\right]$ for La^{3+} and Ce^{3+} with 0.35 M HCl . The slope of the straight lines is x .5 .

Fig. 6. Plot of $\log \left(\mathrm{x} / R_{F}-\mathrm{I}\right)$ vs. $\log \left(\left[\mathrm{H}_{2} \mathrm{~A}_{2}\right]^{3 / 2} /\left[\mathrm{H}^{+}\right]^{2}\right)$ for Be^{2+}. The value of $\log K_{h}$ is obtained by extrapolation.

Fig. 7. Plot of $\log \left(1 / R_{F}-x\right)$ vs. $\log \left(\left[\mathrm{H}_{2} \mathrm{~A}_{2}\right]^{3 / 2} /\left[\mathrm{H}^{+}\right]^{3}\right)$ for La^{3+} and Ce^{3+}.
$\log \mathrm{f}(\gamma)$, the following values for $\log K$ were obtained: $\mathrm{Be}^{2+} 2.58 ; \mathrm{La}^{3+} \mathrm{I} .59$ and Ce^{3+} r.83. These numerical values are fairly close to the values obtained in liquid-liquid distribution experiments ${ }^{16,17}$.

Applications in analytical separations

The experimental results obtained in the present and earlier ${ }^{6}$ work indicate that separation of alkaline earths and their separation from rare earths, aluminium and caesium can be carried out with a selected concentration of hydrochloric acid and HDBP. The separations which are feasible are listed in Table II.
TABLE II
CHROMATOGRAPHIC SEPARATIONS ON PAPER TREATED WITH HDBP
Eluent: HCI, temperature $23 \pm \mathrm{I}^{\circ}$.

Element	$H D B P$ (M)	$\begin{aligned} & \mathrm{HCl} \\ & (M) \end{aligned}$	Solvent front (cm)	R_{r}		
$\mathrm{Be}-\mathrm{Ca}-\mathrm{Mg}$	O.I	0.04	19.0	$\mathrm{Be}=0.0$;	$\mathrm{Ca}=0.42$;	$\mathrm{Mg}=0.88$
$\mathrm{Be}-\mathrm{Ca}-\mathrm{Sr}$	0.2	0.05	20.5	$\mathrm{Be}=0.0$;	$\mathrm{Ca}=0.32$;	$\mathrm{Sr}=0.83$
Al-Ca-Cs	0.1	0.1	21.7	Al $=0.0$;	$\mathrm{Ca}=0.68$;	$\mathrm{Cs}=0.90$
Ba-La	O.I	0.3	20.5	La $=0.23$;	$\mathrm{Ba}=0.92$	
${ }^{00} 5 \mathrm{Sr}{ }^{00} \mathrm{Y}$	O.I	I	22.0	$\overline{\mathbf{Y}}=0.0$;	$\mathrm{Sr}=0.90$	
$\mathrm{Al}-\mathrm{Be}-\mathrm{Mg}$	O.I	1	23.5	Al $=0.0$;	$\mathrm{Be}=0.58$;	$\mathrm{Mg}=0.95$
$\mathrm{Ba}-\mathrm{Sr}-\mathrm{Mg}$	0.2	6	21.6	$\mathrm{Ba}=0.65$;	$\mathrm{Sr}=0.77$;	$\mathrm{Mg}=0.88$
$\mathrm{Ba}-\mathrm{Ca}-\mathrm{Mg}$	O.I	9	22.0	$\mathrm{Ba}=0.59$;	$\mathbf{C a}=0.71$;	$\mathrm{Mg}=0.90$
$\mathrm{Sr}-\mathrm{Ca}-\mathrm{Mg}$	O.I	IO	22.5	$\mathrm{Sr}=0.61$;	$\mathbf{C a}=0.72$;	$\mathrm{Mg}=0.87$

ACIKNOWLEDGEMENTS

Thanks are due to Prof. M. Šušrć and to Dr. I. Gal for their interest in this work and helpful discussion.

SUMMARY
The chromatographic behaviour of beryllium, magnesium, calcium, strontium and barium was investigated on Whatman No. I paper impregnated with di-nbutyl phosphate (HDBP) as the stationary phase. Elution was performed with hydrochloric acid in a concentration range $I \cdot 10^{-3}-10 M$.

The chromatographic data obtained for Be^{2+} and Ca^{2+} were interpreted by means of plots of $\log \left(\mathrm{I} / R_{\boldsymbol{F}}-\mathrm{I}\right)$ vs. $\log \left[\mathrm{H}^{+}\right]$, or versus the amount of HDBP fixed on the paper. From these plots apparent stability constants for the formation of metal complexes were determined using a simple correlation between the liquidliquid extraction coefficient and the (I/ $R_{F}-\mathrm{I}$) function in reversed-phase partition chromatography.

By a convenient choice of the concentration of hydrochloric acid in the mobile phase and that of HDBP in the stationary phase, separation of alkaline earths and their separation from other cations can be achieved.

REFERENCES

J. Chromatog., 32 (1968) 384-393

